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Abstract
Purpose of review—Visceral pain represents a major clinical problem, yet far less is known
about its mechanisms compared to somatic pains, e.g. from cutaneous and muscular structures.

Recent findings—In this review we describe the neuroanatomical bases of visceral pain
signalling in the peripheral and central nervous system, comparing to somatic pains and also the
channels and receptors involved in these events. We include an overview of potential new targets
in the context of mechanisms of visceral pain and hypersensitivity.

Summary—This review should inform on the recognition of what occurs in patients with
visceral pain, why co-morbidities are common and how analgesic treatments work.
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Introduction
The recent growth in interest by researchers and clinicians in pain originating from internal
organs reflects an important paradigm shift in the awareness of the magnitude and impact of
visceral pain disorders. Most people have experienced pain from internal organs ranging
from the mild discomfort of indigestion to the agony of a renal colic, and women are subject
to many forms of visceral pain associated with reproductive life. For both men and women,
pain of internal origin is a common cause for seeking medical attention. In the case of
visceral cancer pain, the growth of a tumour could lead to a myriad of activating stimuli
leading to the pain experience, ranging from chemicals released by cancer cells, immune
cells, distension or obstruction of luminal organs, and/or neuropathic events such as
denervation and/or nerve sprouting and other changes in neuronal function.

Nevertheless, much of our current understanding of pain mechanisms derives from studies
of somatic, but not visceral nociception, possibly due to greater complications associated
with accessing visceral structures with adequate visceral stimuli in research models.
Nociceptive processing in somatic and visceral pain has both common features and
important differences in neurological mechanisms and psychology. Importantly, treatment of
both forms of pain is progressively becoming independent of the accompanying disease and
pain itself is regarded as a syndrome, rather than a symptom or by-product of illness (1).
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Functional gastrointestinal disorders (FGID) underlie the most prevalent forms of visceral
pain. Irritable bowel syndrome (IBS) is one FGID characterised by abdominal pain,
discomfort and altered bowel habits and creates tremendous pressure on the healthcare
system affecting an estimated 10-15% of Europe and U.S. populations with consequent costs
estimated to exceed US$ 40 billion (2-5). Dysmenhorrea, severe pelvic pain during
menstrual cycles, underlies one of the most common gynaecologic complaints in young
women (6, 7). It also contributes to economic burdens associated with lost workdays and
productivity (8, 9). Although some visceral pain disorders are not life-threatening, they still
contribute significantly to a large segment of healthcare resource consumption and have a
considerable negative impact on lives with psychological distress, disturbance of work and
sleep and sexual dysfunction (10).

Moreover, there is increasing evidence that the progression of visceral pathology and pain is
substantially affected by ageing and gender. Some visceral pain syndromes are reported to
be less intense in adults of advanced age than in younger individuals, e.g. appendicitis (11,
12). IBS is also reported twice as frequently in women than in men (13, 14).

The scope of this review covers knowledge of visceral pain mechanisms gained from the
clinical setting to animal and in vitro studies investigating visceral nociceptive signaling.
Some comparisons to somatic pain are highlighted.

Clinical features of visceral pain
Visceral pain usually has a temporal evolution and clinical features vary in different phases
of pathology. ‘True visceral pain’ arises as a diffuse and poorly defined sensation usually
perceived in the midline of the body, at the lower sternum or upper abdomen. In patients,
pain from different visceral organs can have differing areas of presentation, e.g. bladder to
perineal area, heart to left arm and neck, left ureter to left lower quadrant and loin. This
diffuse nature and difficulty in locating visceral pain is due to a low density of visceral
sensory innervation and extensive divergence of visceral input within the CNS. Visceral
pain is therefore perceived more diffusely than noxious cutaneous stimulation with respect
to location and timing (15).

Subsequent development of symptoms may entail referred pain to parietal somatic structures
within the same metameric field as the affected organ. Spatial discrimination of visceral pain
is thus typically referred to superficial structures to produce secondary hyperalgesia of
superficial or deep body wall tissues due to viscerosomatic convergence (discussed later)
(16). Referred pain with or without hyperalgesia is sharper, better localized and less likely to
be accompanied by autonomic signs, and therefore difficult to differentiate from pain of
somatic origin.

Visceral pain is often associated with marked autonomic phenomena, including pallor,
profuse sweating, nausea, GI disturbances and changes in body temperature, blood pressure
and heart rate (15). Table 1 lists the general characteristics of visceral pain in humans (17).

Peripheral visceral neurotransmission
Afferent fibres innervating viscera project to the CNS through autonomic sympathetic and
parasympathetic nerves - a dual sensory innervation (18, 19). Some spinal afferents travel
along hypogastric, lumbar colonic and splanchnic nerves to terminate in thoracolumbar
regions as part of sympathetic innervation, traversing both prevertebral and paravertebral
ganglia en route to the spinal cord (20). Vagal and pelvic afferents respectively terminate in
the brainstem and lumbosacral cord and contribute to parasympathetic innervation (21, 22)
(see Figure 1, adapted from (23)).
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Visceral fibres can serve ‘sensory’ and ‘afferent’ functions; the former can evoke conscious
sensations and the latter regulate autonomic flow (24). Accordingly, activation of hepatic
chemoreceptors or pulmonary stretch receptors is not perceived consciously (25), whereas
sensory afferents innervating the GI and urinary tracts serve regulatory functions of the gut
(e.g. absorption, secretion, propulsion) and contribute to consciously evoked sensations such
as pain and fullness (26).

Visceral sensory afferents are almost exclusively thinly myelinated Aδ-fibres and
unmyelinated C-fibres. However, the distinction between nociceptive afferents and non-
nociceptive afferents is not clear in visceral neurotransmission compared to somatic
nociception, given the functional division of mechanosensitive visceral receptors into two
physiological classes (20, 27, 28). ‘High-threshold receptors’ in organs such as the heart,
oesophagus, colon, ureter and uterus respond only to noxious mechanical stimuli. ‘Low-
threshold receptors’ are intensity-encoding and thus respond to a range of innocuous to
noxious stimuli. An important contrast with somatic nociception is the role of low-threshold
Aβ-fibres, which only convey innocuous mechanical sensations in normal conditions.

Viscera are also innervated by so-called ‘silent’ nociceptors, more accurately designated as
mechanically insensitive afferents (MIAs) (29). These can acquire mechanosensitivity
following inflammation, and have been thoroughly characterised in significant proportions
in rodent pelvic and splanchnic innervations (27, 30) and in human microneurographic
studies of cutaneous C-afferents (31, 32).

Viscerosomatic convergence
The neurophysiological convergence of visceral and somatic afferent inputs to the CNS is
thought to underlie referred visceral pain, where noxious stimulation of viscera triggers pain
referred to somatic sites (33, 34). Viscerosomatic convergence may occur as a result of the
scarcity of visceral afferent fibres with spinal cord terminations; the relative contribution of
visceral afferent fibres to the total spinal cord afferent input is less than 10%. Visceral
afferent terminals also show extensive divergence and intraspinal distribution compared to
cutaneous afferents (21).

Because of viscerosomatic convergence, somatic injury and visceral inflammation can
respectively alter central processing of visceral and somatic inputs (35). Axons can send
peripheral terminals to anatomically distinct segments to produce pain sensations distant to
the primary site (36). Viscerosomatic convergence also accounts for altered central
nociceptive processing through sensitization of primary afferent pathways, ultimately
modifying neuronal input at sites of convergence in the spinal cord or higher centres (37,
38). This convergence of visceral and somatic messages may be one reason for visceral
pains often accompanying somatic pain conditions or vice versa. In addition there can be
viscero-visceral convergence whereby pain from one organ is referred to another.

Brain-gut axis
The “brain-gut axis” is a theoretical model depicting bidirectional neural pathways linking
cognitive, emotional and autonomic centres in the brain to neuroendocrine centres, the
enteric nervous system and the immune system. Bodily visceral functions (e.g. digestion,
nutrient resorption, gaseous exchange, excretion) require complex regulation in which the
CNS is highly integrated with the peripheral and enteric nervous systems and hormonal
controls. Accordingly, altered brain-gut interactions can contribute to autonomic
dysregulation of the gut and associated pain and perceptual changes in visceral disorders like
IBS (39).
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Vagal afferents project to the nucleus tractus solitarius (NTS) in the brainstem with cell
bodies in nodose ganglion. Spinally-converging visceral afferents terminate in the dorsal
horn with second order neurones projecting to higher centres through the dorsal column
pathway (DC), parabrachial pathway and spinothalamic tract (see Figure 2, adapted from
(40)). Studies involving DC lesions have shown suppressed inhibition of exploratory
behaviour induced by noxious visceral stimulation and inhibition of potentiated
visceromotor reflexes evoked by colorectal distension during inflammation (41-43).
Superficial dorsal horn projections mostly form the spinoparabrachial pathway (44),
associated with autonomic and affective responses to painful stimuli (45). Along with NTS
projections from vagal afferents, spinoparabrachial projections are transmitted to limbic and
cognitive higher centres including parts of the brain involved in affect, such as the
amygdala, hypothalamus and periaqueductal grey (PAG) (40, 46, 47).

Spinothalamic projections travel contralaterally from the deep dorsal horn in sub-primates,
along with a proportion of the lamina I population in primates (40, 48). The main thalamic
projections sites are located in the ventroposterior lateral thalamus and ventroposterior
medial thalamus. Ensuing projections to the insular and somatosensory cortices enable
sensory discrimination. The medial thalamic nuclei are thought play greater role in the
affective and motivational aspects of pain processing (49), and accordingly project to the
various areas of the prefrontal cortex that are significantly correlated with visceral pain
responses in imaging studies, including the anterior cingulate cortex (ACC) (50-53).

Descending modulation from higher centres and limbic structures is a dynamic system
producing both facilitatory and inhibitory influences on spinal cord excitability (see Figure
3, adapted from (40)). The RVM in the brain stem is a principal component of this
supraspinal modulatory system and recruitment of different RVM neurones in different
conditions can potentiate or suppress central sensory transmission through descending
pathways to the spinal cord (54-56). Importantly, in animals, RVM neurones do not respond
in the same direction to visceral and cutaneous stimulation – i.e. neurones excited by
somatic stimuli can be inhibited by visceral activity and vice versa (57-59). Electrical
stimulation of the RVM produces biphasic modulation of spinal neuronal responses to CRD
(54, 60) and selective ablation of RVM cells prevents the maintenance of pancreatitis
abdominal hypersensitivity (55). RVM neurones also show reflex-related activity to
colorectal distension that is altered by systemic analgesics (57).

Functional MRI studies in humans show cortical activation following subliminal visceral
stimulation (61). Cortical and subcortical circuitry can modulate brainstem pain processing,
e.g. the RVM and PAG, in a top-down pain fashion, underlying possible mechanisms of
distraction to decreasing both the intensity and affective components of the pain experience
(62, 63). Key brainstem structures that are activated upon visceral stimulation, including the
PAG and RVM, are also activated upon evoked somatic pain in humans, as has been seen in
preclinical studies (64).

Visceral hyperalgesia
In peripheral sensitisation of viscera, persistent noxious stimulation of visceral nociceptors
through inflammatory mediators, ectopic activity and/or noxious stimuli can produce
hyperalgesia. Inflammatory mediators released at sites of injury or tissue damage can
sensitise nociceptors by reducing thresholds for activation and enhancing responsiveness to
stimuli. Ensuing disruption of cells, degranulation of mast cells, secretion by inflammatory
cells and induction of enzymes changes the chemical milieu at the site of injury, contributing
to peripheral hyperalgesia (65, 66).
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Voltage-gated sodium channels are essential for the propagation of action potentials along
axons, the control of membrane excitability and may contribute to sensitisation of visceral
nociceptors. TTX-resistant currents are present on a high proportion of nociceptive afferents
(67) and have been identified in colon DRG neurones (68, 69) and studies using Nav1.8
knockout mice demonstrate an important role for TTX-resistant currents in visceral
nociceptor sensitisation (70-73). These may provide novel drug targets in the future.

TRPV1 is a non-selective cation channel gated by noxious heat (42-53°C), low pH and
endogenous lipids (74) and is preferentially expressed in visceral afferents compared to
somatic in the lower lumbar cord of rats (75). The importance of TRPV1 in visceral
innervation is supported by the painful effects of capsaicin application to viscera in several
experimental and therapeutic paradigms (76-80). Since viscera (or the spinal cord) are not
normally exposed to noxious heat or capsaicin, the presence of TRPV1 at peripheral axons
of visceral afferents renders the afferents sensitive to mediators of inflammation, thus
functionally serving as nociceptors (1, 75, 81). Moreover, TRPV1 receptor expression is
upregulated in tissue samples from patients with IBS, and this increase correlates
significantly with visceral pain (82, 83). A possible coupling between the cooling TRPM8
channels with TRPV1 and TRPA1 on colonic high threshold sensory neurones may also
underlie the desensitizing actions of TRPM8 (84).

Prolonged noxious stimulation of viscera and peripheral sensitisation of visceral nociceptors
can promote excitability of the spinal cord and higher centre neurones that mediate
nociceptive processing, otherwise known as central sensitisation (85). This is characterised
by increased spontaneous activity of central neurones, enlarged receptive fields and an
increase in stimulus-evoked responses (86). In humans with acute and chronic visceral pain
states, secondary hyperalgesia in relevant dermatomes has been demonstrated (87-89).
Central sensitisation has also been shown in humans following oesophageal electrical
stimulation, where altered A-fibre activity produced somatic allodynia of the chest wall (90).
Further evidence of central mechanisms contributing to referred visceral hyperalgesia have
been shown using acid and capsaicin perfusion of the distal oesophagus to induce rectal
hyperalgesia to both heat and mechanical stimulation (77).

The bottom-up hypothesis of development of visceral hyperalgesia maintains that peripheral
sensitisation of visceral afferents and recruitment of MIAs increases the afferent barrage into
the CNS, ultimately producing central sensitisation (29, 91). For example, colorectal
distension in normal human subjects evokes increasing pain scores progressively with the
application of repetitive stimuli of constant amplitude (92). Yet even when peripheral
neuroplastic changes reverse to their normal state, central hyperexcitability may still persist
(93).

However, the association between peripheral insult and visceral pain is not consistent; there
is no detectable colonic abnormality in some IBS patients that have colonic hypersensitivity
(94) and acute pain behaviours are evoked by distension of hollow organs that does not
produce tissue injury in rodents (1, 95, 96). Thus, peripheral insult cannot always be
implicated as a primary etiological factor in the development of chronic visceral
hyperalgesia (97, 98). Alternatively, a top-down hypothesis can describe how initial central
changes in higher centres may increase central excitability to produce visceral hyperalgesia.
Psychological stress and trauma have been heavily linked to development of IBS, and
dysfunction of the noradrenergic cluster, locus coeruleus, has been implicated in IBS
aetiology (99-101). Anxiety and fear are also common aggravators of the pain experience
(102, 103). Nevertheless, the two models are not mutually exclusive and differ only with
respect to the primary site of abnormality. Both models share a central component with a
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positive feedback loop involving visceral afferents, changes in spinal cord excitability and
altered descending modulation of nociceptive processing.

Interoception- a role of the gut in how we feel
Regardless of differences in voluntary motor control between the gut and skin, sensory
inputs of our bodies relate to an evolutionarily primal need for homeostasis - signals
pertaining to physiological conditions that the brain can integrate to maintain integrity of the
body by optimizing energy use. In healthy humans, unique feelings and sensation of the
physiological condition of the body – interoception – are perceived and contribute to
background emotions that can drive behaviours that promote survival (typical visceral
sensations e.g. hunger and satiation, and non-visceral sensations e.g. temperature and itch)
(104).

Patients affected by FGIDs suffer from an alteration in the attentional, perceptual and
affective responses to stimuli from internal sources (105). Symptoms are not only limited to
visceral pain and discomfort, but often embrace a range of other feelings of physical and
emotional distress. Ongoing pain that outlasts its homeostatic role is pathological and
reflects a chronic dysfunction of nociceptive processing in the nervous system (106).

Projections from lamina I are involved in homeostatic signalling, terminating in autonomic
(spinal cord sympathetic cell column) and homeostatic centres (PB nucleus, RVM, PAG and
locus coeruleus). Together with parasympathetic afferent activity from the NTS, which has
neural connections with the hypothalamus and amygdala, the spinal and bulbar projections
from lamina I generate a thalamocortical representation of the physiological state of the
body (48).

Treating visceral pain
Opioids form the core of pain management for a range of acute to chronic visceral pain
conditions and cancer pain, yet are not always optimal due to their analgesic actions being
accompanied by side-effects of constipation and sedation (107). Moreover, the paradoxical
development of analgesic tolerance and nociceptive sensitisation with prolonged opioid use,
opioid-induced hyperalgesia, has also proved an unfortunate obstacle in the clinic for
patients with prolonged exposure to opioid analgesia (108).

NSAIDS, paracetemol and serotonergic compounds form other treatment options for a range
of visceral pain conditions with minimal controlled studies, but generally none of these
compounds are selective for visceral conditions and are also used to treat other forms of
chronic pain (109).

This review has covered some other potential targets such as sodium channels and heat and
cold sensors of the TRP channel family that could be used to treat visceral pain syndromes.
Recently there has also been a convergence of preclinical and human data showing analgesic
efficacy of pregabalin in acute and chronic visceral pain conditions, acting through
subcortical mechanisms that likely include the spinal cord and RVM (57, 102, 110-113).

Major challenges still exist in developing analgesics in visceral pain disorders, largely due to
a lack in understanding of the aetiopathogenesis and mechanisms of chronic pain
development in FGIDs and other visceral pain disorders (114, 115). It is often difficult to
identify whether the primary abnormality leading to the observed enhanced perception of
visceral signals is due to increased peripheral encoding and transduction of stimuli, due to
central pain amplification or due to both.
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Conclusion
Research into the mechanisms mediating visceral nociception and the role of higher centres
in modulating excitability through changes in biphasic descending modulation can provide a
better understanding of the differences between visceral neurotransmission and the more
thoroughly explored signalling mechanisms of somatic stimuli. Ultimately, appreciating
these contrasts and similarities between the development and maintenance of somatic and
visceral pain states and the means by which central excitability occurs in visceral disorders,
in its own right, is also crucial for providing a better understanding of therapeutic treatments
for visceral pain syndromes.
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Key Points

• Visceral pain can manifest using some mechanisms also seen in somatic pain
syndromes, although there are also crucial differences in central nociceptive
processing of pain from these different origins.

• Changes in the balance of facilitation and inhibition of central excitability along
the brain-gut axis can contribute to prolonged chronic pain seen in some visceral
pain disorders.

• Visceral pain can negatively affect the general physiological state of how we
feel along with changes in autonomic controls.

• Visceral pain typically has a strong affective component, and therefore can be
reinforced by anxiety and depression.
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Figure 1. Innervation of the rat GI tract
Some visceral afferents innervating organs in thoracic and abdominal cavities travel either
along the vagus nerve with cell bodies in the nodose ganglion (NG) and central terminals in
the nucleus tractus solitarii (NTS), or along the dorsal column pathway (dotted line) with
cell bodies in dorsal column nuclei (DC) in the brainstem. Other afferents innervating the
same organs have terminals in the spinal cord, before passing through pre- and/or
paravertebral ganglia en route with cell bodies in dorsal root ganglia (not illustrated; (23)).
Straight lined pathways indicate sympathetic innervation and hyphenated pathways indicate
parasympathetic innervation. (Prevertebral ganglia- CG: coeliac ganglion; SMG: superior
mesenteric ganglion; IMG: inferior mesenteric ganglion; PG: pelvic ganglion. Nerves- S1,
S2, S3, S4: greater, less, least and lumbar splanchnic nerves, respectively; IMN:
intermesenteric nerve; HGN: hypogastric nerve; PN: pelvic nerve (adapted from (23)).
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Figure 2. Ascending pathways from spinal cord neurones in visceral nociception (in rodents)
Ascending projections from lamina I neurones in the spinal cord travel along the
spinoparabrachial pathway to the parabrachial nuclei (PB) with ensuing projections to the
amygdala (Am) and hypothalamus (Hyp), whereas projections from deep dorsal horn
neurones travel along the spinothalamic tract to thalamic nuclei (VPM and VPL), with
further projections to the insula, somatosensory cortex and prefrontal cortex. Neurones from
lamina III-IV and X can also travel along the post-synaptic dorsal column with medullary
cell bodies, with further projections to thalamic nuclei (LC, locus coeruleus; Po, posterior
thalamic nuclei; CC, cingulate cortex; CN: cuneate nucleus; GN: gracile nucleus; adapted
from (40).
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Figure 3. Descending pathways in nociception (in rodents)
Descending projections from higher centres are integrated in the midbrain and brainstem.
Inhibitory controls from the locus coeruleus complex (A5, locus coeruleus, A7) are
mediated by pre- and postsynaptic α2-adrenergic receptors in the dorsal horn. Descending
controls from the RVM can be both inhibitory and facilitatory, although one facilitatory
pathway is mediated by presynaptic 5-HT3 receptors (Am: amygdala; Hyp: hypothalamus;
VPM and VPL: thalamic nuclei; Po: posterior thalamic nuclei; CC: cingulate cortex; LC:
locus coeruleus; PAG: periaqueductal grey; RVM: rostral ventromedial medulla; adapted
from (40).
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Table 1

General characteristics of pain due to visceral pathology

1. Is poorly localized with referral to somatic structures

2. Produces nonspecific regional or whole-body motor responses

3. Produces strong autonomic responses

4. Leads to sensitization of somatic tissues

5. Produces strong affective responses
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